EduGrip(A division of EduGrip Education Pvt.Ltd)

Class: XI (PCM) Time allowed : 90 Minutes Maximum Marks : 120

Please read the instructions in Question Booklet before answering the QUESTION PAPER.

1. Before starting the paper, fill up the required details in the given space provided in the question paper cum answer sheet.
2. The question paper consists of ' 30 ' objective type questions. Each question carry 4 marks and all of them are compulsory.
3. Each question contains four alternatives out of which only ONE is correct.
4. There is NEGATIVE marking $\mathbf{- 1}$ for incorrect responses against a question.
5. For rough work, use the space provided at the bottom of each page. No extra sheet will be provided for rough work and you are not supposed to bring the same.
6. Use of blank papers, clip boards, log tables, calculator, slide rule, mobile or any other electronic gadgets in any form is "NOT PERMISSIBLE".
7. You must not carry mobile phone even if you have the same, give it to your Invigilator before commencement of the test and take it back from him/her after the exam.
8. The answers of the questions must be marked by ticking correct on the options against the question by dark Black/Blue Ball point Pen only.

Mathematics

1. The graph of the function $y=f(x)$ is symmetrical about the line $x=2$, then
(a) $f(x)=-f(-x)$
(b) $f(2+x)=f(2-x)$
(c) $f(x)=f(-x)$
(d) $f(x+2)=f(x-2)$
2. Let the function $f: R \rightarrow R$ be defined by $f(x)=2 x+\sin x, x \in R$. Then f is
(a) One-to-one and onto
(b) One-to-one but not onto
(c) Onto but not one-to-one
(d) Neither one-to-one nor onto
3. If $f: R \rightarrow S$ defined by $f(x)=\sin x-\sqrt{3} \cos x+1$ is onto, then the interval of S is
(a) $[-1,3]$
(b) $[1,1]$
(c) $[0,1]$
(d) $[0,-1]$
4. The function $f(x)=\frac{\sec ^{-1} x}{\sqrt{x-[x]}}$, where [.] denotes the greatest integer less than or equal to x is defined for all x belonging to
(a) R
(b) $R-\{(-1,1) \cup(n \mid n \in Z)\}$
(c) $R^{+}-(0,1)$
(d) $R^{+}-\{n \mid n \in N\}$
5. If ' n ' is an integer, the domain of the function $\sqrt{\sin 2 x}$ is
(a) $\left[n \pi-\frac{\pi}{2}, n \pi\right]$
(b) $\left[n \pi, n \pi+\frac{\pi}{2}\right]$
(c) $[(2 n-1) \pi, 2 n \pi]$
(d) $[2 n \pi,(2 n+1) \pi]$
6. The function $f(x)=\sin \left(\log \left(x+\sqrt{x^{2}+1}\right)\right)$ is
(a) Even function
(b) Odd function
(c) Neither even nor odd
(d) Periodic function
7. Let $f(\theta)=\sin \theta(\sin \theta+\sin 3 \theta)$, then $f(\theta)$
(a) ≥ 0 only when $\theta \geq 0$
(b) ≤ 0 for all real θ
(c) ≥ 0 for all real θ (d) ≤ 0 only when $\theta \leq 0$
8. Let $f(x)=\sin x+\cos x, g(x)=x^{2}-1$. Thus $g(f(x))$ is invertible for $x \in$
(a) $\left[-\frac{\pi}{2}, 0\right]$
(b) $\left[-\frac{\pi}{2}, \pi\right]$
(c) $\left[-\frac{\pi}{2}, \frac{\pi}{4}\right]$
(d) $\left[0, \frac{\pi}{2}\right]$
9. If $f(x)=\frac{x}{\sqrt{1+x^{2}}}$, then $($ fofof $)(x)=$
(a) $\frac{3 x}{\sqrt{1+x^{2}}}$
(b) $\frac{x}{\sqrt{1+3 x^{2}}}$
(c) $\frac{3 x}{\sqrt{1+x^{2}}}$
(d) None of these
10. If $f(x)=\frac{\alpha x}{x+1}, x \neq-1$. Then, for what value of α is $f(f(x))=x$
(a) $\sqrt{2}$
(b) $-\sqrt{2}$
(c) 1
(d) -1

PHYSICS

11. A piece of wood of mass 0.03 kg is dropped from the top of a 100 m height building. At the same time, a bullet of mass 0.02 Kg is fired vertically upward, with a velocity $100 \mathrm{~m} / \mathrm{s}$, from the ground. The bullet gets embedded in the wood. Then the maximum height to which the combined system reaches above the top of the building before falling below is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}$)
(a) 10 m
(b) 30 m
(c) 20 m
(d) 40 m
12. A passenger train of length 60 m travels at a speed of $80 \mathrm{~km} / \mathrm{hr}$. Another freight train of length 120 m travels at a speed of $30 \mathrm{~km} / \mathrm{hr}$. The ratio of times taken by the passenger train to completely cross the freight train when: (i) they are moving in the same direction, and (ii) in the opposite direction, is
(a) $25 / 11$
(b) $3 / 2$
(c) $5 / 2$
(d) $11 / 5$
13. An automobile, travelling at $40 \mathrm{~km} / \mathrm{h}$, can be stopped at a distance of 40 m by applying brakes. If the same automobile is travelling at $80 \mathrm{~km} / \mathrm{h}$, the minimum stopping distance, in metres, is (assume no skidding)
(a) 100 m
(b) 75 m
(c) 160 m
(d) 150 m
14. A parachutist after bailing out falls 50 m without friction. When the parachute opens, it decelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$. He reaches the ground with a speed of $3 \mathrm{~m} / \mathrm{s}$. At what height, did he bailout?
(a) 293 m
(b) 111 m
(c) 91 m
(d) 182 m
15. A car, starting from rest, accelerates at the rate f through a distance s, then continues at a constant speed for time t and then decelerates at the rate $\mathrm{f} / 2$ to come to rest. If the total distance traversed in $15 \mathbf{s}$, then
(a) $\mathrm{s}=1 / 2 \mathrm{ft}{ }^{2}$
(b) $\mathrm{s}=(1 / 4) \mathrm{ft}^{2}$
(c) $\mathrm{s}=\mathrm{ft}$
(d) $\mathrm{s}=(1 / 72) \mathrm{ft}^{2}$
16. From a building, two balls A and B are thrown such that A is thrown upwards and B downwards (both vertically). If v_{A} and v_{B} are their respective velocities on reaching the ground, then
(a) $V_{B}>V_{A}$
(b) $v_{A}=v_{B}$
(c) $V_{A}>V_{B}$
(d) their velocities depend on their masses
17. If a body loses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest?
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm
18. In the formula $X=3 Y Z^{2}, X$ and Z have dimensions of capacitance and magnetic induction respectively. What are the dimensions of Y in MKS system ?
a) $\left[M^{-3} L^{-1} T^{3} Q^{4}\right]$
b) $\left[\mathrm{M}^{-3} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{Q}^{4}\right]$
c) $\left[M^{-2} L^{-2} T^{4} Q^{4}\right]$
d) $\left[M^{-3} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{Q}^{1}\right]$
19. Which of the following sets have different dimensions ?
(a)Pressure, Young's modulus, stress
(b)Emf, potential difference, electric potential
(c)Heat, work done, energy
(d)Dipole moment, electric flux, electric field
20. The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is 0.5 mm and there are 50 divisions on the circular scale. The reading on the main scale is 2.5 mm and that on the circular scale is 20 divisions. If the measured mass of the ball has a relative error of 2%, the relative percentage error in the density is
(a) 0.9%
(b) 2.4%
(c) 3.1%
(d) 4.2%

CHEMISTRY

21. If the kinetic energy of an electron is increased four times, the wavelength of the deBroglie wave associated with it would become
(a) Two times
(b) Half
(c) One fourth
(d) Four times
22. The radius of the second Bohr orbit for the hydrogen atom is :
(Planck's constant, $\mathrm{h}=6.262 \times 10^{-34} \mathrm{Js}$: Mass of electron $=9.1091 \times 10^{-31} \mathrm{~kg}$; Charge of electron $\mathrm{e}=1.60210 \times 10^{-19} \mathrm{C}$; permittivity of vacuum $\varepsilon_{0}=8.854185 \times 10^{-12} \mathrm{~kg}^{-1} \mathrm{~m}^{-3} \mathrm{~A}^{2}$)
(a) 1.65 A
(b) 4.76 A
(c) 0.529 A
(d) 2.12 A
23. The frequency of light emitted for the transition $\mathrm{n}=4$ to $\mathrm{n}=2$ of $\mathrm{He}+$ is equal to the transition in H atom corresponding to which of the following
(a) $n=3$ to $n=1$
(b) $\mathrm{n}=2$ to $\mathrm{n}=1$
(c) $\mathrm{n}=3$ to $\mathrm{n}=2$
(d) $n=4$ to $n=3$
24. Based on the equation $\Delta E=-2.0 \times 10^{-18} \mathrm{~J}\left(1 / \mathrm{n}_{2}{ }^{2}-1 / \mathrm{n}_{1}{ }^{2}\right)$ the wavelength of the light that must be absorbed to excite hydrogen electron from level $\mathrm{n}=1$ to level $\mathrm{n}=2$ will be (h $=6.625 \times 10^{-34} \mathrm{Js}, \mathrm{C}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
(a) $2.650 \times 10^{-7} \mathrm{~m}$
(b) $1.325 \times 10^{-7} \mathrm{~m}$
(c) $1.325 \times 10^{-10} \mathrm{~m}$
(d) $5.300 \times 10^{-10} \mathrm{~m}$
25. In the Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen
(a) $5 \rightarrow 2$
(b) $4 \rightarrow 1$
(c) $2 \rightarrow 5$
(d) $3 \rightarrow 2$
26. Which of the following sets of quantum numbers is correct for an electron present in 4f orbital?
(a) $n=4, l=3, m=+4, s=+1 / 2$
(b) $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=-2, \mathrm{~s}=+1 / 2$
(c) $n=4, I=3, m=+1, s=+1 / 2$
(d) $n=4, I=4, m=-4, s=-1 / 2$
27. Which of the following sets of quantum numbers represents the highest energy of an atom?
(a) $n=3, \mathrm{l}=2, \mathrm{~m}=\mathrm{l}, \mathrm{s}=+1 / 2$
(b) $\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=\mathrm{l}, \mathrm{s}=+1 / 2$
(c) $n=4, l=0, m=0, s=+1 / 2$
(d) $\mathrm{n}=3, \mathrm{l}=0, \mathrm{~m}=0, \mathrm{~s}=+1 / 2$
28. The ratio of mass percent of C and H of an organic compound $\left(C_{x} H_{y} O_{z}\right)$ is $6: 1$. If one molecule of the above compound ($\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}$) contains half as much oxygen as required to burn one molecule of compound $\mathrm{C}_{\mathrm{X}} \mathrm{H}_{\mathrm{Y}}$ completely to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The empirical formula of compound $\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}$ is :
(a) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
(b) $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
(c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$
(d) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
29. The concentrated sulphuric acid that is peddled commercially is $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight. If the density of this commercial acid is $1.834 \mathrm{~g} \mathrm{~cm}^{-3}$, the molarity of this solution is :-
(a) 17.8 M
(b) 15.7 M
(c) 10.5 M
(d) 12.0 M
30. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is 1:4. The ratio of number of their molecule is :
(a) $1: 8$
(b) $3: 16$
(c) $1: 4$
(d) $7: 32$
